Линии выреза, лежащие на боковой поверхности цилиндра, проецируются на окружность основания на П1. Профильная их проекция строится по точкам измерения их глубин относительно плоскости симметрии цилиндра ф. Сквозные ребра 55' и 66' невидимы на П1 и П3
На рис. 130, б приведена задача построения выреза в конусе. Призматическое отверстие в конусе имеет три внутренние стенки, границами между которыми служат ребра АА', BE' и СС', которые перпендикулярны П2i. Правая стенка (АЕ) имеет форму трапеции, так как секущая плоскость этой стенки проходит через вершину S и пересекает конус по образующим SD и SD'. Части этих образующих между точками А (А') и В (В1) дают контур правой стенки. Нижняя стенка (между ребрами ВВ' и СС') представляет собой часть круга, ограниченного параллельно h. Левая стенка (между ребрами АА' и СС') ограничена частью параболы, проекции которой определяются точками F (Р) на профильном меридиане конуса и промежуточными точками К (К') на вспомогательной параллели h'.
Профильный меридиан конуса «вырезан» на участке между точками Е (E') и F (F).
На рис. 130, в построены проекции сферы с вырезом. Призматическое отверстие имеет 4 внутренние стенки, границами между которыми служат ребра АА', ВВ', СС', DD', которые перпендикулярны П2.
Каждая стенка представляет собой часть круга. Верхняя и нижняя параллельны П1 и проецируются на нее в виде части окружности с радиусами, которые определяются по параллелям h и h'.
Экватор вырезан между точками 1,5 и 2,6. Правая и левая стенки выреза параллельны П3 и проецируются на нее в виде частей круга с радиусами, которые определяются окружностями Р и Р'. Профильный меридиан вырезан между точками 3,7 и 4,8.
Приведенные примеры показывают, что, меняя положение секущих плоскостей, можно получить вырезы заданной формы.