если секущая плоскость Sum1 пересекает
эллипс, если секущая плоскость Sum1 пересекает все образующие поверхности (б);
парабола, если секущая плоскость (Sum2) параллельна только одной образующей (S— 1) поверхности (в);
гипербола, если секущая плоскость (Sum3) параллельна двум образующим (S—5 и 5—6) поверхности (г);
две образующие (прямые), если секущая плоскость (Sum4) проходит через вершину S поверхности (д). Проекции кривых линий сечений
Рис. 125
Рис. 126
плоскостью конуса строятся по отдельным точкам (точки 2, 4 на рис. 125, б).
При пересечении сферы плоскостью всегда получается окружность. Если секущая плоскость параллельна какой-либо плоскости проекций, то на эту плоскость окружность сечения проецируется без искажения (рис. 126, а). Если секущая плоскость занимает проецирующее положение, то на плоскости проекций, которой секущая плоскость перпендикулярна (рис. 126, б—на фронтальной), окружность сечения изображается отрезком прямой (12—42), длина которого равна диаметру окружности, а на другой плоскости — эллипсом, большая ось которого (51—61) равна диаметру окружности сечения. Этот эллипс строят по точкам. Точки видимости 2 и 3 относительно плоскости П1 лежат на экваторе сферы.
Рис. 127
Задача построения линии пересечения несколько сложнее при пересечении сферы плоскостью общего положения (рис. 127) Q(a^h).
Этот случай можно свести к предыдущему (см. рис. 126, б), если построить дополнительные изображения сферы и секущей плоскости на плоскости П4 _|_П1, причем П4 _|_h (6). Тогда плоскость в станет проецирующей Q _|_П4 в новой системе плоскостей (см. рис. 127). На чертеже оси проекции проходят через центр сферы. На плоскости П4 отмечаем проекции опорных точек: А4 — самой низкой точки сечения; В4 — самой высокой, дающих величину диаметра d окружности сечения с центром в точке О (О4); Е4 = F4 — на экваторе сферы— точек видимости линии сечения относительно плоскости П1, С4 = D4 = O4 — горизонтального диаметра CD, определяющего большую ось эллипса, — горизонтальной проекции окружности сечения.
Содержание Назад Вперед
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий