Проектно-вычислительный комплекс Structure CAD

   Смотрите www.1-yur.ru юридическая консультация онлайн бесплатно и по телефону, мень. |       

О практической сходимости


Следует учитывать, что упомянутые выше оценки скорости сходимости ориентированы на выяснение асимптотических свойств решения, а практического расчетчика интересует степень близости приближенного решения, полученного на вполне определенной сетке конечных элементов. Конечно, в большинстве случаев асимптотическая сходимость сопровождается и приемлемой "практической сходи­мостью", под которой мы будем понимать возможность получения приемлемой точности при сравнительно грубом разбиении, но из этого правила есть и исключения. Приведем в связи с этим высказывание великого математика и физика А. Пуанкаре (цитируется по [1, стр.52]):

"... из двух рядов, коих общие члены суть 1000n/n! и n!/1000n, математики назовут первый сходящимся ... потому что миллионный член гораздо меньше 999 999-го, второй же ряд они рассматривают как расходящийся, ибо его общий член может беспредельно возрастать. Астрономы, наоборот, примут первый ряд за расходящийся, потому что первые его 1000 членов идут возрастая; второй ряд они сочтут за сходящийся, потому что первые его 1000 членов идут убывая и в начале убывание весьма быстрое". И далее совершенно головокружительный вывод: "Оба воззрения законны: первое — в исследованиях теоретических, второе в численных приложениях".

По-видимому, при решении любой достаточно ответственной задачи нельзя обойтись без анализа качества решения, которое можно проверить путем повторного рассмотрения задачи на другой сетке элементов. Конечно, большую задачу вряд ли стоит решать целиком на сгущающихся сетках, но очевидно, что выполнение такого анализа для характерных фрагментов расчетной схемы является рациональным. Эмпирически установленный факт устойчивости результата при сгущении сетки является весьма убедительным доводом в пользу правильности выбранного подхода к решению.

Сказанное не следует трактовать как призыв к голому эмпиризму, теоретические исследования сходимости весьма важны и их результаты могут быть использованы в практических целях, однако здесь имеются и некоторые указанные ниже серьезные проблемы, которые расчетчик должен учитывать. Одна из первых проблем состоит в том, что при удовлетворительной практической сходимости по перемещениям могут не так хорошо сходиться интересующие расчетчика внутренние усилия или напряжения. Они определяются дифференцированием перемещений, а операция дифференцирования является некорректной в том смысле, что незначительному изменению функции может отвечать  значительное изменение производной.



Содержание  Назад  Вперед







Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий